Potential Clinical Benefits And Probable Mechanisms of Action Promoted By A Nutraceutical Obtained By Fermentation And Rich In Β-Glucans And Amino Acids for Oncologic Patients

Autores

  • Hezio Jadir Fernandes Junior Universidade Federal de São Paulo (UNIFESP), São Paulo, SP
  • Fernando Sabia Tallo Universidade Federal de São Paulo (UNIFESP), São Paulo, SP
  • Rafael Batman de Góes Faculdade Santa Marcelina (FSM), São Paulo, SP
  • Carolina Trabasso Ferraz de Oliveira Universidade Santo Amaro (UNISA), São Paulo, SP
  • Lucas Antonio Duarte Nicolau Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba
  • Alexia Nascimento Arias Universidade Santo Amaro (UNISA), São Paulo
  • Bianca Lorayne de Almeida Viana Universidade Santo Amaro (UNISA), São Paulo, SP
  • Francisco Sandro Menezes-Rodrigues Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP

DOI:

https://doi.org/10.37497/JMRReview.v3i00.55

Palavras-chave:

Nutraceutical, β-glucans, Aminoacids, Oncological Patients, Immune System, BionutriAR1®

Resumo

Cancer patients are generally submitted to chemotherapy and radiotherapy, which tend to cause problems related to intense inflammatory processes, malnutrition, nausea, and emesis. Therefore, performing supplementation in these patients is important and necessary, as it favors cancer patients from a nutritional point of view. Amino acids and β-glucans obtained from fermentation processes proved to be important in the care of cancer patients because they improve the nutritional parameters and general condition of the patient. We aim to discuss the benefits obtained by cancer patients undergoing chemotherapy and radiotherapy who received supplementation with a fermented nutraceutical rich in β-glucans and amino acids. A literature review was carried out through an active search for scientific articles by the following descriptors in Portuguese: “nutraceutical”, “β-glucans”, “oncological patients”. In addition, we also discuss the benefits caused using the product called BionutriAR1®, a nutraceutical that contributes to the recovery of nutritional status. We conclude that the use of products capable of promoting supplementation of β-glucans and amino acids is beneficial to cancer patients, especially those undergoing chemotherapy and radiotherapy and, therefore, there is an indication of supplementation for these patients with the fermented product BionutriAR1®.

Biografia do Autor

Hezio Jadir Fernandes Junior, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP

Postgraduate Program in Cardiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP

Fernando Sabia Tallo, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP

Department of Clinical Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP – Brazil

Rafael Batman de Góes, Faculdade Santa Marcelina (FSM), São Paulo, SP

School of Medicine, Faculdade Santa Marcelina (FSM), São Paulo, SP – Brazil.

Carolina Trabasso Ferraz de Oliveira, Universidade Santo Amaro (UNISA), São Paulo, SP

School of Medicine, Universidade Santo Amaro (UNISA), São Paulo, SP.

Lucas Antonio Duarte Nicolau, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba

Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders, Universidade Federal do Delta do Parnaíba (UFDPar), Parnaíba, PI.

Alexia Nascimento Arias, Universidade Santo Amaro (UNISA), São Paulo

School of Medicine, Universidade Santo Amaro (UNISA), São Paulo, SP

Bianca Lorayne de Almeida Viana, Universidade Santo Amaro (UNISA), São Paulo, SP

School of Medicine, Universidade Santo Amaro (UNISA), São Paulo, SP.

Francisco Sandro Menezes-Rodrigues, Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP

Postgraduate Program in Interdisciplinary Surgical Science, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brazil.

Referências

Jamal-Hanjani, M.; Wilson, G. A.; McGranahan, N.; Birkbak, N. J.; Watkins, T.; Veeriah, S.; Shafi, S.; Johnson, D. H., Mitter, R., Rosenthal, R., Salm, M., Horswell, S., Escudero, M., Matthews, N., Rowan, A., Chambers, T., Moore, D. A., Turajlic, S., Xu, H., Lee, S. M., … TRACERx Consortium. Tracking the Evolution of Non–Small-Cell Lung Cancer. New England Journal of Medicine 2017, 376, 2109–2121.

Sagar, B.; Lin, Y.S.; Castel, L.D. Cost drivers for breast, lung, and colorectal cancer care in a commercially insured population over a 6-month episode: an economic analysis from a health plan perspective. Journal of Medical Economics 2017, 20, 1018–1023. DOI: https://doi.org/10.1080/13696998.2017.1339353

Morigi, C. Highlights from the 15th St Gallen International Breast Cancer Conference, Vienna: tailored treatments for patients with early breast cancer. Ecancermedicalscience 2017, 11, 732. DOI: https://doi.org/10.3332/ecancer.2017.732

Carling, D. AMPK signalling in health and disease. Current Opinion in Cell Biology 2017, 45, 31–37. DOI: https://doi.org/10.1016/j.ceb.2017.01.005

Errante, P.R.; Neto, A.C.; Bergantin, L. B. Insights for the inhibition of cancer progression: Revisiting Ca2+ and cAMP signalling pathways. Advances in Cancer Prevention 2017, 2, e103. DOI: https://doi.org/10.4172/2472-0429.1000e103

Hnisz, D.; Weintraub, A.S.; Day, D.S.; Valton, A.L.; Bak, R.O.; Li, C.H.; Goldmann, J.; Lajoie, B.R.; Fan, Z.P.; Sigova, A.A.; Reddy, J.; Borges-Rivera, D.; Lee, T.I.; Jaenisch, R.; Porteus, M.H.; Dekker, J.; Young, R.A. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 2016, 351, 1454–1458. DOI: https://doi.org/10.1126/science.aad9024

Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T.A.; Takeda, K.M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials. 2016, 82, 221–228. DOI: https://doi.org/10.1016/j.biomaterials.2015.12.031

Zegarska, B.; Nowacki, M.; Pietkun, K.; Jóźwicki, W.; Nowikiewicz, T.; Al-Obaidi, N.Y.; Habib, S.L.; Zegarski, W. A first case report of rare synchronous double cancers: malignant cutaneous melanoma and gastrointestinal stromal tumor. Postepy Dermatologii I Alergologii 2017, 1, 375–380. DOI: https://doi.org/10.5114/ada.2017.69322

Yajid, A.I.; Rahman, H.S.A.; Wong, M.P.K.; Zain, W.Z.W. Potential benefits of Annona muricata in combating cancer: a review. Malays J Med Sci 2018, 25, 5-15. DOI: https://doi.org/10.21315/mjms2018.25.1.2

Ellsworth, D.L., Blackburn, H.L., Shriver, C.D., Rabizadeh, S., Soon-Shiong, P., & Ellsworth, R. E. Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis. Clinical and Translational Medicine 2017, 6, 15. DOI: https://doi.org/10.1186/s40169-017-0145-6

Errante, P.R.; Rodrigues, F.S.M.; Leite, A.A.; Caricati-Neto, A; Bergantin, L.B. The Second Messengers Ca2+ and camp as Potential Therapeutic Targets for the Control of Cancer Progression. Advances in Cancer Prevention, 2017, 2, e105. DOI: https://doi.org/10.4172/2472-0429.1000e105

Eagles, J.R.; Jimeno, A. Cobimetinib: inhibiting MEK1/2 in BRAF V600-mutant melanoma. Drugs Today (Barc) 2016, 52, 593-605. DOI: https://doi.org/10.1358/dot.2016.52.11.2542234

Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G.; Liljeberg-Elmståhl, H.G. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 2006, 29, 976–981. DOI: https://doi.org/10.2337/dc05-2012

Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; Ruga, S.; Cardamone, A.; Coppoletta, A.; Mollace, A.; Cognetti, F.; Mollace, V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. DOI: https://doi.org/10.3390/nu13113834

de Matuoka e Chiocchetti, G.; Viana, L.R.; Lopes-Aguiar, L.; da Silva Miyaguti, N.A.; Gomes-Marcondes, M.C.C. Nutraceuticals Approach as a Treatment for Cancer Cachexia. In Handbook of Nutraceuticals and Natural Products; Gopi, S., Balakrishnan, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022. DOI: https://doi.org/10.1002/9781119746843.ch14

Argilés J.M. Cancer-associated malnutrition. European journal of oncology nursing: the official journal of European Oncology Nursing Society 2005, 9, S39–S50. DOI: https://doi.org/10.1016/j.ejon.2005.09.006

Muscaritoli, M.; Lucia, S.; Farcomeni, A.; Lorusso, V.; Saracino, V.; Barone, C.; Plastino, F.; Gori, S.; Magarotto, R.; Carteni, G.; Chiurazzi, B.; Pavese, I.; Marchetti, L.; Zagonel, V.; Bergo, E.; Tonini, G.; Imperatori, M.; Iacono, C.; Maiorana, L.; Pinto, C.; Rubino, D.; Cavanna, L.; Cicilia, R.D.; Gamucci, T.; Quadrini, S.; Palazzo, S.; Minardi, S.; Merlano, M.; Colucci, G.; Marchetti, P.; PreMiO Study Group. Prevalence of malnutrition in patients at first medical oncology visit: the PreMiO study. Oncotarget 2017, 8, 79884-79896. DOI: https://doi.org/10.18632/oncotarget.20168

Vetvicka, V.; Luca Vannucci, L.; Sima, P.; Richter, J. Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019, 24, 1251. DOI: https://doi.org/10.3390/molecules24071251

Tartari, R.F.; Busnello, F.M.; Nunes, C.H.A. Nutritional Profile of Patients Submitted to Chemotherapy in a Tertiary Outpatient Clinic. Rev. Bras. Cancerol 2010, 56, 43-50. DOI: https://doi.org/10.32635/2176-9745.RBC.2010v56n1.1525

Cencioni, C.; Trestini, I.; Piro, G.; Bria, E.; Tortora, G.; Carbone, C.; Spallotta, F. Gastrointestinal Cancer Patient Nutritional Management: From Specific Needs to Novel Epigenetic Dietary Approaches. Nutrients 2022, 14, 1542. DOI: https://doi.org/10.3390/nu14081542

Prado, C.D.; Campos, J.A.D.B. Nutritional status of oncology patients. Revista Uningá 2007, 14, 21-33.

Van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur J Oncol Nurs 2005, 9, 51-63. DOI: https://doi.org/10.1016/j.ejon.2005.09.007

Ravasco, P. Nutrition in Cancer. Nestle Nutr Inst Workshop Ser 2015, 82, 91-102. DOI: https://doi.org/10.1159/000382004

Miola, T.M. Nutritional status of patients attended in clinics of chemotherapy. Nutrição Brasil 2016, 15, 30-35. DOI: https://doi.org/10.33233/nb.v15i1.103

Carvalho, A.C.L.; Martins, P.C.; Araujo, R.B.; Cerdeira, C.D.; Silva, R.B.V.; Baros, G.B.S. Nutritional parameters in patients with cancer attended at a reference center in the south of Minas Gerais state, Brazil. Revista Brasileira de Cancerologia 2018, 64, 159-166. DOI: https://doi.org/10.32635/2176-9745.RBC.2018v64n2.74

Boligon, C.S., Huth, A. The impact of use of glutamine on patients with head and neck tumors in radiotherapy and chemotherapy treatment. Revista Brasileira de Cancerologia 2011, 57, 31-38. DOI: https://doi.org/10.32635/2176-9745.RBC.2011v57n1.683

Yun, C.H.; Estrada, A.; Van Kessel, A.; Park, B.C.; Laarveld, B. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunology and Medical Microbiology 2003, 35, 67–75. DOI: https://doi.org/10.1016/S0928-8244(02)00460-1

Magnani, M.; Castro-Gómez, R.J.H. β-glucana from Saccharomyces cerevisiae: constitution, bioactivity and obtaining. Semina: Ciências Agrárias, Londrina 2008, 29, 631-650. DOI: https://doi.org/10.5433/1679-0359.2008v29n3p631

Ko, Y-T.; Lin, Y-L. 1,3-beta-glucan quantification by a fluorescence microassay and analysis of its distribution in foods. J Agric Food Chem 2004, 52, 3313-3318. DOI: https://doi.org/10.1021/jf0354085

Kim, S.Y.; Song, H.J.; Lee, Y.Y.; Cho, K-H.; Roh, Y.K. Biomedical issues of dietary fiber beta-glucan. J Korean Med Sci 2006, 21, 781-789. DOI: https://doi.org/10.3346/jkms.2006.21.5.781

Kogan, G.; Sandula, J.; Korolenko, T.A.; Falameeva, O.V.; Poteryaeva, O.N.; Zhanaeva, S.Y.; Levina, O.A.; Filatova, T.G.; Kaledin. V.I. Increased efficiency of Lewis lung carcinoma chemotherapy with a macrophage stimulator--yeast carboxymethyl glucan. Int Immunopharmacol 2002, 2, 775-781. DOI: https://doi.org/10.1016/S1567-5769(02)00015-2

Lin, H.; She, Y-H.; Cassileth, B.R.; Sirotnak, F.; Rundles, S.C. Maitake beta-glucan MD-fraction enhances bone marrow colony formation and reduces doxorubicin toxicity in vitro. Int Immunopharmacol 2004, 4, 91-9. DOI: https://doi.org/10.1016/j.intimp.2003.10.012

Kuroda, Y.; Hara, Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutation Research 1999, 436, 69–97. DOI: https://doi.org/10.1016/S1383-5742(98)00019-2

Miadokova, E.; Svidova, S.; Vlckova, V.; Duhova, V.; Prazmariova, E.; Tothova, K.; Nadova, S.; Kogan, G.; Rauko, P. The role of natural biopolymers in genotoxicity of mutagens/carcinogens elimination. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc 2005, 149, 493-496. DOI: https://doi.org/10.5507/bp.2005.088

Di Luzio, N.R., Williams, D.L., McNamee, R.B., Edwards, B.F., Kitahama, A. Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. International Journal of Cancer 1979, 24, 773–779. DOI: https://doi.org/10.1002/ijc.2910240613

Moon, S.H.; Heo, J.C.; Fine, R.L.; Kim, H.M.; Kim, S.U.; Yoon, B.D.; Lee, S.H. BRD-glucan exhibits potent immunochemotherapeutic activity in vitro and in vivo. International Journal of Oncology 2005, 26, 395–404. DOI: https://doi.org/10.3892/ijo.26.2.395

Demir, G.; Klein, H.O.; Mandel-Molinas, N.; Tuzuner, N. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 2007, 7, 113–116. DOI: https://doi.org/10.1016/j.intimp.2006.08.011

Vetvicka V.; Vetvickova, J. Glucan supplementation has strong anti-melanoma effects: role of NK cells. Anticancer Res 2015, 35, 5287-5292.

Pohorska, J.; Richter, J.; Kral, V.; Rajonohova, D.L.; Stiborova, I.; Vetvicka, V. Reconstruction of NK cells during complex cancer treatment. Journal of Tumor 2016, 4, 398–402. DOI: https://doi.org/10.17554/j.issn.1819-6187.2016.04.86

Fuller, R.; Moore, M.V.; Lewith, G.; Stuart, B.L.; Ormiston, R.V.; Fisk, H.L.; Noakes, P.S.; Calder, P.C. Yeast-derived β-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition (Burbank, Los Angeles County, Calif.) 2017, 39, 30–35. DOI: https://doi.org/10.1016/j.nut.2017.03.003

de Souza, J.A.; Gallon, C.W. Diet use of immunomodulatory impact and enteral diet adults during chemotherapy and radiotherapy in patients with head and neck cancer: a literature review. Braspen J 2017, 32, 273-281.

Vecchiarelli, A.; Dottorini, M.; Cociani, C.; Pietrella, D.; Todisco, T.; Bistoni, F. Mechanism of intracellular candidacidal activity mediated by calcium ionophore in human alveolar macrophages. Am J Respir Cell Mol Biol 1993, 9, 19-25. DOI: https://doi.org/10.1165/ajrcmb/9.1.19

Bates, P.J.; Ralston, N.V.; Pavlovic, Z.V.; Rohrbach, M.S. Calcium influx is required for tannin-mediated arachidonic acid release from alveolar macrophages. Am J Physiol 1995, 268, 33-40. DOI: https://doi.org/10.1152/ajplung.1995.268.1.L33

Hoyal, C.R.; Gozal, E.; Zhou, H.; Foldenauer, K.; Forman, H.J. Modulation of the rat alveolar macrophage respiratory burst by hydroperoxides is calcium dependent. Arch Biochem Biophys 1996, 326, 166-171. DOI: https://doi.org/10.1006/abbi.1996.0061

MacMicking, J.; Xie, Q.W.; Nathan, C. Nitric oxide and macrophage function. Annu Rev Immunol 1997, 15, 323-350. DOI: https://doi.org/10.1146/annurev.immunol.15.1.323

Lehmann, M.H.; Berg, H. Interleukin-10 expression is induced by increase of intracellular calcium levels in the monocytic cell line U937. Pflugers Arch 1998, 435, 868-870. DOI: https://doi.org/10.1007/s004240050596

Zhang, G.H.; Helmke, R.J.; Mörk, A.C.; Martinez, J.R. Regulation of cytosolic free Ca2+ in cultured rat alveolar macrophages NR8383. J Leukoc Biol 1997, 62, 341-348. DOI: https://doi.org/10.1002/jlb.62.3.341

Mörk, A.C.; Helmke, R.J.; Martinez, J.R.; Michalek, M.T.; Patchen, M.L.; Zhang, G.H. Effects if particulate and soluble (1-3)-beta-glucans on Ca2+ influx in NR8383 alveolar macrophages. Immunopharmacology 1998, 40, 77-89. DOI: https://doi.org/10.1016/S0162-3109(98)00033-2

Sun, X.; Martinez, J.R.; Zhang, G.H. Inhibition of Ca2+ influx by pentoxifylline in NR8383 alveolar macrophages. Immunopharmacology 1999, 43, 47-58. DOI: https://doi.org/10.1016/S0162-3109(99)00042-9

Zheleznyak, A.; Brown, E.J. Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes. J Biol Chem 1992, 267, 12042-12048. DOI: https://doi.org/10.1016/S0021-9258(19)49803-7

Huwiler, A.; Pfeilschifter, J. A role for protein kinase C-α in zymosan-stimulated eicosanoid synthesis in mouse peritoneal macrophages. European Journal of Biochemistry 1993, 217, 69-75. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18219.x

Schöndorf, M.; Bidlingmaier, F.; Von Ruecker, A. Protein kinase C regulates IL-8 and fMLP induced cytoplasmic Ca2+ increase in human granulocytes by receptor modulation measurements by flow cytometry. Biochem and Biophys Res Commun 1993, 197, 549-555. DOI: https://doi.org/10.1006/bbrc.1993.2514

Tuominen, H.; Leino, L.; Akerman, K.E.O. Does protein kinase C regulate receptor agonists-mediated elevation in the cytosolic Ca2+ in human neutrophils? Biochem and Biophys Res Commun 1994, 203, 998-1004. DOI: https://doi.org/10.1006/bbrc.1994.2281

Tapper, H.; Sundler, R. Protein kinase C and intracellular pH regulate zymosan-induced lysosomal enzyme secretion in macrophages. Journal of Leukocyte Biology 1995, 58, 485-494. DOI: https://doi.org/10.1002/jlb.58.4.485

Zhu, X.; Chu, P.B.; Peyton, M.; Birnbaumer, L. Molecular cloning of a widely expressed human homologue for the Drosophila TRP gene. FEBS Lett 1995, 373, 98-193. DOI: https://doi.org/10.1016/0014-5793(95)01038-G

McCarthy, S.A.; Hallam, T.J.; Merritt, J.E. Activation of protein kinase C in human neutrophils attenuates agonist-stimulated rises in cytosolic free Ca2+ concentration by inhibiting bivalent-cation influx and intracellular Ca2+ release in addition to stimulating Ca2+ efflux. Biochem J 1989, 264, 357-64. DOI: https://doi.org/10.1042/bj2640357

Kong, S.K.; Choy, Y.M.; Lee, C.Y. Protein kinase C as a multi-targeted feedback inhibitor regulating the Ca2+ responses to chemotactic peptide stimulation in the murine macrophage cell line PU5-1,8. Biol Signals 1993, 2, 84-94. DOI: https://doi.org/10.1159/000109480

Balasubramanyam, M.; Gardner, J.P. Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells. Cell Calcium 1995, 18, 526-41. DOI: https://doi.org/10.1016/0143-4160(95)90015-2

Mörk, A.C.; Sun, X.; Liu, X.; Rodriguez, D.; Martinez, J.R.; Castro, R.; Zhang, G.H. Regulation of (1,3)-betta-glucan-stimulated Ca(2+) influx by protein kinase C in NR8383 alveolar macrophages. J Cell Biochem 2000, 78, 131-140. DOI: https://doi.org/10.1002/(SICI)1097-4644(20000701)78:1<131::AID-JCB12>3.0.CO;2-X

Noss, I.; Ozment, T.R.; Graves, B.M.; Kruppa, M.D.; Rice, P.J.; Williams, D.L. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immunity 2015, 21, 759-769. DOI: https://doi.org/10.1177/1753425915595874

Oliveira, D.L.; Pugine, S.M.P.; Ferreira, M.S.L.; Lins, P.G.; Costa, E.J.X.C.; de Melo, M.P. Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver. Cell Biochem Funct 2007, 25, 195-201. DOI: https://doi.org/10.1002/cbf.1307

Waitzberg, D.L.; de Nardi, L.; Horie, L.M.; Alves, C.C. Nutrição em Câncer – Avaliação do Paciente. Visão Médica em Oncologia 2008, 1, 17-23.

Xue, H.; Roy, S.L.; Sawyer, M.B.; Field, C.J.; Dieleman, A.; Baracos, V.E. Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour. Br J Nutr 2009, 102, 434-442. DOI: https://doi.org/10.1017/S0007114508199482

Dillon, E.L.; Volpi, E.; Wolfe, R.R.; Sinha, S.; Sanford, A.P.; Arrastia, C.D.; Urban, R.J.; Casperson, S.L.; Paddon-Jones, D.; Sheffield-Moore, M. Amino acid metabolism and inflammatory burden in ovarian cancer patients undergoing intense oncological therapy. Clinical Nutrition (Edinburgh, Scotland) 2007, 26, 736–743. DOI: https://doi.org/10.1016/j.clnu.2007.07.004

Downloads

Publicado

2024-01-10

Como Citar

Fernandes Junior, H. J., Tallo, F. S., Góes, R. B. de, Ferraz de Oliveira, C. T., Nicolau, L. A. D., Arias, A. N., Viana, B. L. de A., & Menezes-Rodrigues, F. S. (2024). Potential Clinical Benefits And Probable Mechanisms of Action Promoted By A Nutraceutical Obtained By Fermentation And Rich In Β-Glucans And Amino Acids for Oncologic Patients. Journal of Medical Residency Review, 3(00), e055. https://doi.org/10.37497/JMRReview.v3i00.55

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)